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Zeno’s paradox

"Zeno's arguments, in some form, have afforded grounds for almost all 
theories of space and time and infinity which have been constructed from his 
time to our own."  Bertrand Russell 
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Relational and Discrete

relational interpretation of quantum mechanics
ontological meaning is shifted away from the wave function 
in favor of  the measurement process

there is no absolute time
but many relational times governed by interactions

quanta of spacetime 
prediction of  Loop Quantum Gravity
fundamental scale: the Planck length

(Rovelli’s program)
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Constants exists in nature

Special Relativity
maximal local physical velocity: the speed of  light c

Quantum Mechanics
minimal action    in all physical interactions
     a finite region of  phase space contains only 
a finite number of  distinguishable (orthogonal) quantum states
     minimal amount of  information in the state of  a system

Quantum Gravity
minimal length: the Planck length 

h̄
⌘

⌘

`P



the Planck length

Quantum Mechanics 
Heisenberg Uncertainty 

Sharp localization requires large energy.

General Relativity 
Black-Hole Horizon

The horizon prevent a sharper localization.

Quantum Gravity

Dx > h̄/Dp

E ⇠ cp

R ⇠ GM/c2
M ⇠ E/c2

Dx � R

`P =

r
h̄G
c3 ⇠ 10�35 m
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The Cosmological Constant

It is part of  GR formulation
We measure it!

If  we live in a 3-sphere of  radius
(or Lorentzian space with a horizon)

Spherical harmonics with

 Quantization of  geometry: angles should be quantized! 
 Λ: minimal resolution of  small angles in the sky
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General 
Covariance



The Gravitational Field

General Relativity: background independence!

fields <---> Gauge Symmetries

U(1)
SU(2)
SU(3)

SL(2,C)l
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Gravity as an interacting gauge field



Classical theory

Holst action

Spin connection ! = !adx
a 2 sl(2,C)

S[e,!] =

Z
e ^ e ^ F ⇤[!] +
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Tetrads gab ! eia gab = eia eib e = eadx
a 2 R(1,3)

!(e) : de+ ! ^ e = 0



Classical theory

Holst action

Spin connection ! = !adx
a 2 sl(2,C)

S[e,!] =

Z
e ^ e ^ F ⇤[!] +

1

�

Z
e ^ e ^ F [!]

Tetrads gab ! eia gab = eia eib e = eadx
a 2 R(1,3)

Gravity as an interacting gauge field
but only in the tetrad formulation we can couple 
fermions and Yang-Mills fields!

!(e) : de+ ! ^ e = 0



Lorentz Invariance & Time Gauge

General Relativity has a local Lorentz invariance

In each point of  spacetime, we have a Lorentz invariant tetrad

Time is a pure Gauge: we can fix it

We are left with the rotational part of  the Lorentz transformations

On the boundary

Linear simplicity constraint ~K + �~L = 0

ni = (1, 0, 0, 0)

nie
i = 0ni = eai na

SL(2,C) ! SU(2)



Quanta of 
Spacetime



Loop Quantum Gravity

It is a theory about quanta of  spacetime

Each quantum is Lorentz invariant

The states are boundary states at fixed time

The physical phase space is spanned by SU(2) group variables                
SL(2,C) ! SU(2)



Hilbert Space

  Abstract graphs:  Γ={N,L}          

  Group variables:                                                                     

  Graph Hilbert space: 

  The space        admits a basis    

  Gauge invariant operator                        with

    Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897)

  Geometry is quantized:

~Ll 2 su(2)

hl 2 SU(2){

jl

vn

H� = L2[SU(2)L/SU(2)N ]

H� |�, j`, vni

l
s(l)

t(l)

Gll� = �Ll · �Ll�
X

l2n

Gll0 = 0

Quantum states of space
rather than states on space

eigenvalues are discrete
the operators do not commute
quantum superposition



Loops and Discrete Geometry

       “Holonomy of  the Ashtekar-Barbero connection along the link”

                                       SU(2) generators

    gravitational field operator (tetrad)

    Composite operators: 

     Area:                                    

     Volume:                                          

     Angle: 

A� =
�

l��

⇥
Li

lL
i
l.

⌅Ll = {Li
l}, i = 1, 2, 3

VR =
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n�R

Vn, V 2
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2
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Definition of the Theory

And God said

and thee was
SpaceTime

(H,A,W)

H� = L2[SU(2)L/SU(2)N ]
Hilbert Space:                                         

Operators’ Algebra:

Wv = (PSL(2,C) � Y� �v)(1I)
Transition Amplitude:

1. GEOMETRY QUANTIZED

• The matrix of the components Li
a, a = 1, .., 3 is L = � 1

2 (det M)M�1, where M is the matrix
formed by the components of three edges of the tetrahedron that emanate from a common
vertex.

Exercise: Show all these definitions are equivalent.

Figure 1.3. The four vectors~La, normals to
the faces.

The vectors~La have the following properties.

• They satisfy the “closure” relation

~C :=
4

Â
a=1

~La = 0. (1.3.5)

• The quantities ~La determine all other geometrical
quantities (for a tetrahedron), such as areas, vol-
ume, angles between edges and dihedral angles be-
tween faces. The geometry of the tetrahedron, and
all these quantities, are invariant under a common
SO(3) rotation of the four~La. Therefore the tetrahe-
dron is determined by an equivalence class of ~La’s
satisfying (1.3.5), under rotation. Check that the re-
sulting number of degrees of freedom is correct.

• The area Aa of the face a is |~La|.
• The volume V is determined by the (properly ori-

ented) triple product of any three faces:

V2 =
2
9
(~L1 ⇥~L2) ·~L3 =

2
9

eijkLi
1Lj

2Lk
3 = eabceijkLi

aLj
bLk

c =
2
9

det L. (1.3.6)

Exercise: Prove these relations. Hint: choose a tetrahedron determined by a triple of orthonormal edges,
and then argue that the result is general because the formula is invariant under linear transformations.

If the tetrahedron is small compared to the local curvature, the metric can be assumed to be
locally flat and~La can be identified with the flux of the triad field ei = ei

adxa across the face a (triads
and tetrads will be discussed in detail in Chapter 3)

Li
a =

1
2

ei
jk

Z

a
ei ^ ei (1.3.7)

Since the triad is the gravitational field, this gives the explicit relation between these quantities
and the gravitational field.

Quantization of the geometry

We have all the ingredients for jumping to quantum gravity. The geometry of a real physical tetra-
hedron is determined by the gravitational field, which is a quantum field. Therefore the normals
~La are to be described by quantum operators, when we do not disregard quantum gravity. These
will obey commutation relations. The commutation relation can be obtained from the hamilto-
nian analysis of GR, by promoting Poisson brackets to operators, in the same manner in which
(1.2.1) and (1.3.3) can; but ultimately they are quantization postulates, like (1.2.1) and (1.3.3). Let
us therefore just postulate them here. The simplest possibility is to mimic (1.3.3), namely to write

[Li
a, Lj

b] = idabl2#ij
k Lk

a, (1.3.8)

11



Covariant 
Transition 
Amplitudes



Spinfoam Amplitudes

P (�) = |�W |�⇥|2

Superposition principle

Locality: vertex amplitude

Lorentz invariance

Amplitude associated to a state     of  a boundary of  a 4d region �

Probability amplitude

�W |⇥⇥ =
�

�

W (�)

W (�) �
�

v

Wv.

Wv = (PSL(2,C) � Y� �v)(1I)

3d boundary boundary graph

Wv

a spin network history  σ :  spinfoam

4d

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov ’08]



A(jf , ie) ⇠
j�1

eiSRegge + e�iSRegge

ZC ����!
C!1

Z
Dg eiS[g]WC ���!

j�1
eiS�

Theorem : 
[Barrett, Pereira, Hellmann, 
Gomes, Dowdall, Fairbairn 2010]

[Freidel Conrady 2008, 
Bianchi, Satz 2006,
Magliaro Perini, 2011]

Theorem : 
[Han 2012]

Aq(jf , ie) ⇠
j�1,q⇠1

eiS
⇤
Regge + e�iS⇤

Regge q = e⇤~G

LARGE DISTANCE LIMIT

WC(hl) =

Z

SU(2)
dhvf

Y

f

�(hf )
Y

v

A(hvf )



expansion:  discretization of  spacetime

••

q0ij

qij

W (q0ij , qij) ⇠
Z

@g= q0,q
Dq ei S

Two-complex:

graph: truncation of  the # degrees of  freedom

Transition Amplitudes in Cosmology

C = {V,E, F}

Bianchi, Rovelli, FV ’10
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The boundary states represent classical geometries. 
Canonical LQG 1990, Penrose spin-geometry theorem 1971

Boundary geometry operators have discrete spectra. 
Canonical LQG main results, 1990

The classical limit of  the vertex amplitude converges
to the Regge Hamilton function (with cosmological constant).   
Barrett et al, Conrady-Freidel, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012

Amplitudes are locally Lorentz covariant. 
The short-scale discrete geometry does not break Lorentz invariance.

Theory extended to fermions and Yang Mills fields.
Bianchi, Han, Magliaro, Perini, Rovelli, Wieland 2010

The amplitudes with positive Λ are UV and IR finite.
Han, Fairbairn, Moesburger, 2011

Covariant Loop Gravity (Spinfoam)

http://arxiv.org/find/gr-qc/1/au:+Bianchi_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Bianchi_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Han_M/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Han_M/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Magliaro_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Magliaro_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Perini_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Perini_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Rovelli_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Rovelli_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Wieland_W/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Wieland_W/0/1/0/all/0/1


The boundary states represent classical geometries. 
Canonical LQG 1990, Penrose spin-geometry theorem 1971

Boundary geometry operators have discrete spectra. 
Canonical LQG main results, 1990

The classical limit of  the vertex amplitude converges
to the Regge Hamilton function (with cosmological constant).   
Barrett et al, Conrady-Freidel, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012

Amplitudes are locally Lorentz covariant. 
The short-scale discrete geometry does not break Lorentz invariance.

Theory extended to fermions and Yang Mills fields.
Bianchi, Han, Magliaro, Perini, Rovelli, Wieland 2010

The amplitudes with positive Λ are UV and IR finite.
Han, Fairbairn, Moesburger, 2011

Covariant Loop Gravity (Spinfoam)

http://arxiv.org/find/gr-qc/1/au:+Bianchi_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Bianchi_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Han_M/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Han_M/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Magliaro_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Magliaro_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Perini_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Perini_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Rovelli_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Rovelli_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Wieland_W/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Wieland_W/0/1/0/all/0/1


Perturbative vs Non-Perturbative

Early perturbative quantum gravity: non-renormalizability

Local: observables at arbitrarily small regions in a continuous manifold
Infinite renormalization group
Cut-off: it is a mathematical trick

Perturbations methods are some kind of  approximation. 

Infinities: we perturb around points that are not really good.

Non-perturbative approach: presence of  a fundamental scale!



Planck length + horizon = minimal angular resolution

Mathematically a fuzzy spheres: spherical harmonics with  

A maximum angular momentum characterizes the 
representations of  the quantum group  
                                                              with k~2 

The local rotational symmetry is better described by 
than by SU(2), with      

Physically: non-commutativity, fuzziness of  any angular 
function, impossibility of  resolving small dihedral angles. 

Loop gravity: φ is an operator with a discrete spectrum.

Best angular resolution:                                 with

Quantum Groups

(Majid’88)

j
max

q = ei2⇡/k j
max

SU(2)q

q = ei⇤l2P

�
min

=
p

2/j
max

j
max

⇠ 1
l

2
P ⇤

(Major’99)

(Connes’94)



Holy Infinities



Sacred is everything that we feel such as not belonging to 
human world (Eliade ’57). It could be a space, it could be a time, 
it could be everything that goes beyond our human experience. 

In this world, we size things with respect to us: we say heavens 
are up in the sky because we are confined down by gravity, we 
measure land in terms of  our foot, we count as much as needed 
by our daily experience. 

Modeling, sizing and counting are sophisticated tools that we 
have developed but are not given a priori.
Is there something that we can not model/size/count?

Numbers and the Sacred



We call in this way what cannot be said. 
We call infinite what is beyond our human experience. 
But if  this is a condition of  our human nature, it has not to be 
something that has necessarily to exist in Nature. 

Infinity can exist as a mathematical object, a powerful tool for 
our calculation. But physics is not just mathematics. It is a 
discourse about nature trough the mathematical language, 
where the ultimate goal is to associate a number to a physical 
system, and from this number a meaning. 

An infinity has the meaning of  “beyond our present knowledge”. 
But making science and making physics is to constantly push 
forward the boundary of  our knowledge, in a process that 
cannot have an end. 



``There are some, 
king Gelon, who think that 
the number of  the sand is 

infinite in multitude"

 Archimedes
“Sand Reckoner" 



All wisdom comes from Yahweh
	 and with him it remains forever.
	 The sand of  the seashore, and the drops of  rain,
	 and the days of  eternity: who can number these?
	 Heaven's height, earth's breadth,
	 the depths of  the abyss: who can explore these?
	 Before all other things wisdom was created;
	 and prudent understanding, from eternity.
	 The wellspring of  wisdom is the word of  God in the heights,
	 and her runlets are the eternal commandments.

 Bible - Joshua ben Sira



meaning to Friedmann's calculation
unavoidable instability (with or without)
experimental support in galaxy redshift

A beginning for the universe: Genesis' fiat lux ?
Pope Pius XII said the big bang was a god’s manifestation. 

Lemaître reacted to this: he did not believe that any scientific 
true should be searched in the Bible, as scientific opinions in the 
Bible reflect only the common knowledge at the time of  writing. 
He was aware of  the precarious condition of  every scientific 
truth: today's infinities may become finite tomorrow... 

George Lemaître



Physics is about a quantitative description of  the world. 

Infinities represent an end point for physics: 
their appearance means that we can  not associate 
a finite number to the system under study. 

Infinities provide the most tantalizing paradoxes to physicists: 
they point to the old assumptions that we have to give away in 
order to go beyond our present theories, toward the explorations 
of  new level of  energy, space and time. 

Every infinity and its overcoming is the turning point 
for a new paradigm.



``I think that what is truly infinite may just be the abyss of  our ignorance."
Carlo Rovelli 



``I think that what is truly infinite may just be the abyss of  our ignorance."
Carlo Rovelli 

``Two things are infinite: the universe and human stupidity; 
and I'm not sure about the universe."

Albert Einstein



1957         

1961       Regge calculus   →   truncation of GR

1967       W-DeW equation

1971       Spin-geometry theorem →  spin network    

1988       Complex variables for GR

1988       Loop solutions to WdW eq → LQG

1994       Spectral problem for geometrical operators   →  spin network 

1996       Covariant dynamics →  spinfoams 

2008       Covariant dynamics of LQG 

2010       Asymptotic of the new dynamics → recovery of Regge action

2011       Cosmological constant → finiteness of the transition amplitudes
              

Z(q) =
�

�g=q
Dg eiSEH [g]

Curvature

a “spinfoam”
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Regime of  validity of  the expansion:

On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli

Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)

Summarizing:
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Exact quantum gravity
transition amplitudes

W (hl)

~!0���!
General relativity
Hamilton function

S(q)

C
!

1
��
��
!

�
!

1
��
��
!

LQG
transition amplitudes

WC(hl)

~!0���!
Regge

Hamilton function
S�(lib )

Classical limit�����������������������!

TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above

STRUCTURE OF THE THEORY

No critical point 

No infinite renormalization

Physical scale: Planck length


