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1957         

1961       Regge calculus   !   truncation of  GR

1967       W-DeW equation

1971       Spin-geometry theorem !  spin network    

1988       Complex variables for GR

1988       Loop solutions to WdW eq ! LQG

1994       Spectral problem for geometrical operators   !  spin network 

1996       Covariant dynamics !  spinfoams 

2008       Covariant dynamics of  LQG 

2010       Asymptotic of  the new dynamics ! recovery of  Regge action

2011       Cosmological constant ! finiteness of  the transition amplitudes              
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LOOP QUANTUM COSMOLOGY

(canonical) LQC

e

Barrau, Cailleteau, Grain, Mielczarek, Linsefors
Agullo, Ashtekar, Nelson

Input: SU(2) group variables

Minimal area gap

Hamiltonian constraint

Holonomy corrections

Inverse-volume corrections

Output: Singularity resolution

No need to violate the SEC

Modified Friedmann equations

Wave-packet non-singular trajectories

Modified Muhanov-Sasaki equations

Predictions for the CMB
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IN THIS TALK

(covariant) LQG

COSMOLOGY

Input: Dynamics of quanta of spacetime

Group variables on graphs

Lorentzian signature

Local product of interaction vertex

Feynman rules

Output: UV finite

Physical cutoff  at the Planck scale

IR finite

Cosmological const. = q-deformation

GR recover in the semiclassical limit!

Easy to couple YM fields

Cosmology provides the (only?) ground to check the theory 

A quantum cosmology based on the full quantum theory

Possibility to explore the deep quantum regime in the early universe

Possibility to include quantum fluctuations naturally



prejudice 1

“in quantum gravity 
spacetime should be 
quantized”
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QUANTA OF SPACE

It is a theory about quanta of  spacetime

Each quantum is Lorentz invariant

The states are boundary states at fixed time

The physical phase space is spanned by SU(2) group variables                SL(2,C) → SU(2)



  Abstract graphs:  !={N,L}          

  Group variables:                                                                     

  Graph Hilbert space: 

  The space         admits a basis    

  Gauge invariant operator                                 with

          Penrose’s spin-geometry theorem (1971), and Minkowski theorem (1897)

         “Holonomy of  the Ashtekar-Barbero connection along the link”

                                                SU(2) generators

            gravitational field operator (tetrad) 

�Ll ∈ su(2)

hl ∈ SU(2){
HΓ = L2[SU(2)L/SU(2)N ]

HΓ |Γ, j�, vn�

Gll� = �Ll · �Ll�
�

l∈n

Gll� = 0

�Ll = {Li
l}, i = 1, 2, 3

hl
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HILBERT SPACE & OPERATOR ALGEBRA
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REPRESENTING GEMETRIES

Quantum states of  space, rather than states on space.

    Composite operators: 

     Area:                                    

     Volume:                                          

     Angle: 

    Geometry is quantized:

AΣ =
�

l∈Σ

�
Li

lL
i
l.

VR =
�

n∈R

Vn, V 2
n =

2
9

|�ijkLi
lL

j
l�L

k
l”|.

eigenvalues are discrete
the operators do not commute
quantum superposition

coherent states

Li
lL

i
l�



prejudice 2

“the theory should be 
so simple and short that 
it would fit on a tshirt”
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THE THEORY

(H,A,W)          defines a background independent quantum field theory 

�
Li
a, L

j
b

�
= iδab�

2�ijk L
k
a

And God said

and there was
SPACETIME

(H,A,W)

HΓ = L2[SU(2)L/SU(2)N ]
Hilbert Space:                                         

Operator Algebra:

Wv = (PSL(2,C) ◦ Yγ ψv)(1I)
Transition Amplitude:
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SPINFOAM AMPLITUDES

P (ψ) = |�W |ψ�|2

Superposition principle

Locality: vertex amplitude

Lorentz covariance

Amplitude associated to a state     of  a boundary of  a 4d region ψ

Probability amplitude

�W |ψ� =
�

σ

W (σ)

W (σ) ∼
�

v

Wv.

Wv = (PSL(2,C) ◦ Yγ ψv)(1I)

Wv

3d boundary boundary graph a spin network history  ! :  spinfoam

4d

[Engle-Pereira-Livine-Rovelli, Freidel-Krasnov ’08]
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hf =
�

v

hvfWC(hl) =

�

SU(2)
dhvf

�

f

δ(hf )
�

v

A(hvf )

A(hf ) =
�

jf

�

SL(2,C)
dge

�

f

(2jf + 1) Trj [hfY
†
γ geg

−1
e� Yγ ]

Yγ : Hj → Hj,γj

|j;m� �→ |j, γ(j + 1); j,m�

Transition amplitudes

Vertex amplitude

Simplicity map

COVARIANT LQG DYNAMICS

2-complex 
(vertices, edges, faces)

C
v

e
Γ

hvf

f

Γ



z = ξ� + iη� −→ z = αṘ+ iβR2 ∀�
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COSMOLOGIACAL TRANSITION AMPLITUDES

the universe at “time” t’

the universe at “time” t

••

q�ij

qij

W (q�ij , qij) ∼
�

∂g= q�,q
Dq ei S

The full theory can be regarded as an expansion for growing N. 
FRW cosmology corresponds to the lower order where there is only 
a regular cellular decomposition: the only d.o.f. is given by the volume.

Coherent states          describing a homogeneous and isotropic geometry: |H��

Fixed graph with N of  nodes. 
This defines an approximated 
kinematics of  the universe, 
inhomogeneous but truncated 
at a finite number of  cells. 

The graph captures the large scale 
d.o.f. obtained averaging the metric 
over the faces of  a cellular 
decomposition formed by N cells.

[Rovelli, FV ]
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COSMOLOGIACAL TRANSITION AMPLITUDES

the universe at “time” t’
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�

∂g= q�,q
Dq ei S

•

• ••

The full theory can be regarded as an expansion for growing N. 
FRW cosmology corresponds to the lower order where there is only 
a regular cellular decomposition: the only d.o.f. is given by the volume.

Coherent states          describing a homogeneous and isotropic geometry: |H��

Fixed graph with N of  nodes. 
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kinematics of  the universe, 
inhomogeneous but truncated 
at a finite number of  cells. 

The graph captures the large scale 
d.o.f. obtained averaging the metric 
over the faces of  a cellular 
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SL(2,C) → SU(2)

S[e,ω] =

�
B[e] ∧ F [ω]

ω, B = (e ∧ e)∗ +
1

γ
(e ∧ e)
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ni = (1, 0, 0, 0)

Tetrads

Spin connection

GR action

BF theory

Canonical variables

On the boundary

A REMINDER OF THE CLASSICAL THEORY

gab = eia eib

nie
i = 0

�K + γ�L = 0Linear simplicity constraint

gab → eia

ω = ωadx
a ∈ sl(2,C) ω(e) : de+ ω ∧ e = 0

S[e,ω] =

�
e ∧ e ∧ F ∗[ω] +

1

γ

�
e ∧ e ∧ F [ω]

B → (K = nB,L = nB∗)

ni = eai na

e = eadx
a ∈ R(1,3)

 (Holst term)



Yγ

|k, ν; j,m� ∈ Hk,ν =
�

j=k,∞
H

j
k,ν
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SL(2,C) UNITARY IRRIDUCIBLE REPRESENTATIONS

�K + γ�L = 0Main property:

Boost generator               Rotation generator

weakly on the image of

"-simple representations:

Image of         :     

Yγ

|j;m� ∈ Hj

Yγ : Hj → Hj,γj

|j;m� �→ |(j, γ(j + 1)) ; j,m�

2j ∈ Z

2k ∈ N, ν ∈ R

ν = γ(k + 1)

j = k Langlands classification:Vogan’s minimal k-type)

SU(2) ! SL(2,C)   map:SL(2,C)SU(2)

SL(2,C) unitary representations:SL(2,C)

SU(2) unitary representations:SU(2)

I

http://en.wikipedia.org/wiki/Langlands_classification
http://en.wikipedia.org/wiki/Langlands_classification


prejudice 3

“quantum gravity 
should remove the infinities 
of  general relativity”



W (η, h) =
�

j

(2j + 1) Trj [Y
†eiηKzY h]

=
�

j

(2j + 1) Trj [e
iηγLzh]

=
�

j,m

(2j + 1)eiηγmD(j)(h)mm

[Rovelli, FV]

Wedge amplitude:
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REMOVAL OF INFINITIES 1:  singularities

�K + γ�L = 0Spinfoam dynamics:

dA =
�2

2
dη =

1

2a2
dη

� = 1/a

P �

P

z

t

A =

�

R
γKz =

�

R
LzGauge-fix the tetrads to be diagonal: Lorentzian area

W (η, j) = eiη8πG�γj

! is the boost parameter 
along the trajectory from P to P"In the coherent-state basis :

�max =
√
8πG�Amin = 4πG� amax =

�
1

8πG�



 Minimal distance from the horizon:

Maximal acceleration: 

Maximal energy density:

SPINFOAM: singularity are avoided!    [Rovelli, FV]

ρmax ∼ 3

8πG

Ṙ2

R2

�����
max

=
3

8πG
�−2
min =

3

�(8πG)2

�P Ṙ/R → sin
�
�P Ṙ/R

�
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REMOVAL OF INFINITIES 1:  singularities

Minimal volume - classically the conjugate variable is the Hubble rate

LQC: holonomy corrections ! bounded Hubble rate!  effective eqs:

Strong singularity are solved: big bang, big crunch, big rip...  [Singh, FV]

Maximal acceleration: it may have implications for weak-singularity resolution    [Rovelli, FV]

No energy condition is violated. It is a pure quantum effect. 

a ∼
�

R̈/R

� = R/Ṙ



Early perturbative quantum gravity: non-renormalizability

Local: observables at arbitrarily small regions in a continuous manifold
Infinite renormalization group
Cut-off: it is a mathematical trick

Perturbations methods are some kind of  approximation. 

Infinities: we perturb around points that are not really good.

Francesca VidottoSpinfoam & Cosmology

REMOVAL OF INFINITIES 2:  finiteness of the amplitude

Han, Fairbairn, Moesburger, 2011
see also Bianchi, Rovelli 20111

Amplitude       :  SL(2,C) " SL(2,C)q  network evaluation. 

ao = 8πG�γ
√
3

2

Non-perturbative approach: presence of  a fundamental scale!

Minimal area                                ! natural UV cut-off

Cosmological constant  # > 0   ! natural IR cut-off �P

φmin =
√

Λ �P

horizon
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REMOVAL OF INFINITIES 2:  finiteness of the amplitude

Planck length + horizon = minimal angular resolution

Mathematically a fuzzy spheres: spherical harmonics with  

A maximum angular momentum characterizes the representations of  

                                                              

The local rotational symmetry is better described by 

than by SU(2), with      

Physically: non-commutativity, fuzziness of  any angular function, 

impossibility of  resolving small dihedral angles. 

Loop gravity: ! is an operator with a discrete spectrum.

Best angular resolution:                                                with

(Majid’88)

jmax

q = ei2π/k jmax

SU(2)q

q = eiΛl2P

φmin=
�

2/jmax jmax∼ 1
l2P Λ (Major’99)

(Connes’94)

SU(2)q

with  k~2 

SU(2)q
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On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit

Carlo Rovelli
Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which

remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical

interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-

able q ∈ C, and lagrangian L(q, q̇). Given an initial con-

figuration q at time t and a final configuration q
�
at time

t
�
, let qq,t,q�,t� : → C be a solution of the equations of

motion such qq,t,q�,t�(t) = q and qq,t,q�,t�(t
�
) = q

�
. Assume

for the moment this exists and is unique. The Hamilton

function is the function on (C × )
2
defined by

S(q, t, q
�
, t

�
) =

�
t
�

t

dt L(qq,t,q�,t� , q̇q,t,q�,t�), (1)

namely the value of the action on the solution of the

equation of motion determined by given initial and final

data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has

remarkable properties and is a powerful tool that remains

meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the

system and |q� the eigenstates of its q observables. The

transition amplitude

W (q, t, q
�
, t

�
) = �q�|e− i

�H(t
�−t)|q�. (2)

codes all the quantum dynamics. In a path integral for-

mulation, it can be written as

W (q, t, q
�
, t

�
) =

�
q(t

�
)=q

�

q(t)=q

D[q] e
i
�
� t�
t dtL(q,q̇)

. (3)

In the limit in which � can be considered small, this can

be evaluated by a saddle point approximation, and gives

W (q, t, q
�
, t

�
) ∼ e

i
�S(q,t,q

�
,t

�
)
. (4)

That is, the classical limit of the quantum theory can be

obtained by reading out the Hamilton function from the

quantum transition amplitude:

lim
�→0

(−i�) logW (q, t, q
�
, t

�
) = S(q, t, q

�
, t

�
). (5)

The functional integral in (3) can be defined either by

perturbation theory around a gaussian integral, or as a

limit of multiple integrals. Let us focus on the second def-

inition, useful in non-perturbative theories such as lattice

QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn−1, tn, tn−1) be a discretiza-

tion of the lagrangian. The multiple integral

WN (q, t, q
�
, t

�
) =

�
dqn

µ(qn)
e

i
�
�N

n=1 aL(qn,qn−1,tn,tn−1) (6)

where µ(qn) is a suitable measure factor, tn=n(t
�−t)/N ≡

na, and the boundary data are q0 = q and qN = q
�
, has

two distinct limits. The continuous limit

lim
N→∞

WN (q, t, q
�
, t

�
) = W (q, t, q

�
, t

�
) (7)

gives the transition amplitude. While the classical limit

lim
�→0

(−i�) logWN (q, t, q
�
, t

�
) = SN (q, t, q

�
, t

�
). (8)

gives the Hamilton function of the classical dis-

cretized system, namely the value of the action�
N

n=1
aL(qn, qn−1, tn, tn−1) on the sequence qn that ex-

tremizes this action at given boundary data. The dis-

cretization is good if the classical theory is recovered as

the continuous limit of the discretized theory, that is, if

lim
N→∞

SN (q, t, q
�
, t

�
) = S(q, t, q

�
, t

�
). (9)

Summarizing:
C
o
n
ti
n
u
o
u
s

li
m

it
−−
−−

−−
−−

−−
−−

−−
−−
→

Exact quantum gravity

transition amplitudes

W (hl)

�→0−−−→
General relativity

Hamilton function

S(q)

C
→

∞
−−
−−
→

∆
→

∞
−−
−−
→

LQG

transition amplitudes

WC(hl)

�→0−−−→
Regge

Hamilton function

S∆(lib
)

Classical limit−−−−−−−−−−−−−−−−−−−−−−−→

TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-

ingful in diffeomorphism invariant systems and offers an
excellent conceptual tool for dealing with background in-

dependent physics. To see this, let’s first consider its gen-

eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about

background independence. The system considered above

STRUCTURE OF THE THEORY

No critical point 

No infinite renormalization

Physical scale: Planck length

Viability of  the expansion: 
first radiative corrections are logarithmic  (Riello)

Regime of  validity of  the expansion:



prejudice 4

“quantum gravity 
should have general relativity
as its classical limit”



C
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Theorem : 
[Barrett, Pereira, Hellmann, 
Gomes, Dowdall, Fairbairn 2010]

jf

ie

v

Z =
�

jf ,ie

�

f

djf
�

v

A(jf , ie)

Two-complex 
(dual to a cellular decomposition)

[Freidel Conrady 2008, 
Bianchi, Satz 2006,
Magliaro Perini, 2011]

A(jf , ie) ∼
j�1

eiSRegge + e−iSRegge

ZC −−−−→
C→∞

�
Dg eiS[g]WC −−−→

j�1
eiS∆

Theorem : 
[Han 2012]

Aq(jf , ie) ∼
j�1,q∼1

eiS
Λ
Regge + e−iSΛ

Regge q = eΛ�G

LARGE DISTANCE LIMIT
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APPLICATIONS: SPINFOAM COSMOLOGY

gravity

Rµν − 1
2 gµν = 8πG Tµν

ds2 = dt2 − a2(t) d3�x

+ perturbations



Francesca VidottoSpinfoam & Cosmology

APPLICATIONS: SPINFOAM COSMOLOGY

quantum gravitygravity

canonical / covariant
quantization

Rµν − 1
2 gµν = 8πG Tµν

ds2 = dt2 − a2(t) d3�x

+ perturbations

Wv = (PSL(2,C) ◦ Yγ ψv)(1I)
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APPLICATIONS: SPINFOAM COSMOLOGY

symmetry 
reduction

quantum 
cosmology

cosmology

quantum gravitygravity

canonical / covariant
quantization

Rµν − 1
2 gµν = 8πG Tµν

ds2 = dt2 − a2(t) d3�x

+ perturbations

Wv = (PSL(2,C) ◦ Yγ ψv)(1I)
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APPLICATIONS: SPINFOAM COSMOLOGY

symmetry 
reduction

quantum 
cosmology

cosmology

quantum gravitygravity

canonical / covariant
quantization

Rµν − 1
2 gµν = 8πG Tµν

ds2 = dt2 − a2(t) d3�x

+ perturbations

Wv = (PSL(2,C) ◦ Yγ ψv)(1I)
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1st-ORDER FARCTORIZATION

H = const (aȧ2 − Λ

3
a
3) = 0 ȧ = ±

�
Λ

3
a

G� = GnsG
−1
nt

Text
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classical dynamics

1st-ORDER FARCTORIZATION

H = const (aȧ2 − Λ

3
a
3) = 0 ȧ = ±

�
Λ

3
a

G� = GnsG
−1
nt

Text
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classical dynamics

1st-ORDER FARCTORIZATION

SH = const

�
dt (aȧ2 +

Λ

3
a3)

��� = const
2

3

�
Λ

3
(a3

f
− a3

i
)

ȧ = ±
�

Λ

3
a

G� = GnsG
−1
nt

Text
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classical dynamics

quantum dynamics

1st-ORDER FARCTORIZATION

SH = const

�
dt (aȧ2 +

Λ

3
a3)

��� = const
2

3

�
Λ

3
(a3

f
− a3

i
)

ȧ = ±
�

Λ

3
a

W (af , ai) = e
i

� SH(af ,ai) = W (af )W (ai)

G� = GnsG
−1
nt

Text



Francesca VidottoSpinfoam & Cosmology

classical dynamics

quantum dynamics

loop dynamics  

1st-ORDER FARCTORIZATION

�W |ψH(z,z�)� = W (z, z�) = W (z)W (z�)

SH = const

�
dt (aȧ2 +

Λ

3
a3)

��� = const
2

3

�
Λ

3
(a3

f
− a3

i
)

ȧ = ±
�

Λ

3
a

W (af , ai) = e
i

� SH(af ,ai) = W (af )W (ai)

G� = GnsG
−1
nt

Text
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classical dynamics

quantum dynamics

loop dynamics  

1st-ORDER FARCTORIZATION

�W |ψH(z,z�)� = W (z, z�) = W (z)W (z�)

SH = const

�
dt (aȧ2 +

Λ

3
a3)

��� = const
2

3

�
Λ

3
(a3

f
− a3

i
)

ȧ = ±
�

Λ

3
a

Spinfoam Cosmology

h f = =

�

∏
v∈∂ f

hv f

�
h� (5.8)

h f v → h� (see figure)

Av(h�) =
�

SL(2,C)
dGn ∏

�

P(h�, G�) (5.9)

where we define G� := Gs(�)G−1
t(�) as the product of the SL(2,C) group elements at the

source and target nodes, extremals of each oriented link �. We take a product on the links
�, having defined for each link a function P(h, G):

P(h, G) = ∑
j
(2j + 1)2

�

SU(2)
dg χ(j)(hg−1) χ(γj,j)(gG) (5.10)

being χ(j)(hg−1) bla bla bla bla. We integrate and we obtain:

P(h, G) = ∑
j
(2j + 1)2 D(j)(h)m�

m D(γj,j)(G)j,m
j,m� . (5.11)

The sum is over the coloring of these links, i.e. on the spins j�.
D(j)(h) is a representation-(j) matrix of SU(2) with dimension 2j+1 and D(γj,j)(G) i a

representation-(γj, j) matrix of SL(2,C) with an infinite dimension. The function P(h, G)
is the kernel of a map Y that glues these matrices with different dimensions:

Y : H
(j) −→ H

(j,γj)

|j,m� |(j,γj); j,m� (5.12)

whose matrix elements are given by �(j,γj); j�,m� |Y | j,m� = δp,γjδkjδjj�δmm� .

order (0) = W0(h�, h��) = δΓ�
(h�, h��)

(5.13)

trivial dynamics (in analogy with QED scattering)
We are interested in the probability amplitude of finding a different geometry from

the initial one (while here W(z,z�) has support on p = p�).
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classical dynamics

quantum dynamics

loop dynamics  

1st-ORDER FARCTORIZATION

�W |ψH(z,z�)� = W (z, z�) = W (z)W (z�)

SH = const

�
dt (aȧ2 +

Λ

3
a3)

��� = const
2

3

�
Λ

3
(a3

f
− a3

i
)

ȧ = ±
�

Λ

3
a

Spinfoam Cosmology

order (1) � WC∞(z
�
,z) =

�
h�

�
h
�
� ψz�(h��) W1(h

�
�, h�) ψz(h

�
�) (5.14)

W1(h��, h�) not simplicial

W1(h
�
�, h�) =

�

SL(2,C)

N−1

∏
n=1

dGn

L

∏
�=1

P(h�, G�)P(h��, G
�
�) (5.15)

The integration over the SL(2,C) elements Gn associated to the edges imposes Lorentz

invariance. Notice that the integration is over all the Gn but one, in order to avoid a

redundancy that makes the amplitude diverge [?].

We use the definition of ψz(h�) and W1(h�, h
�
�)

WC∞(z
�
,z) =

�
h�

�
h
�
� ψz�(h��) W1(h

�
�, h�) ψz(h

�
�)

=

��

SL(2,C)
dG

�
L

∏
�=1

P(h��, G
�)

���

SL(2,C)
dG

L

∏
�=1

P(h�, G)

�

= W(z)W(z�) h o H qui sopra? (5.16)

and we define (???)

Pt(H�, G) =
�

dh�Kt(h�, H�)P(h�, G) (5.17)

= ∑
j�

(2j�+1)e
−2th̄j�(j�+1)

D
(j�)(H�)

m
�

m D
(γj�,j�)(G�)

jm

jm� (5.18)

The transition amplitude factorize (this is because we are working at the first order in

the exponsion) and each single term W(z) can be interpreted as the Hartle-Hawking wave

function of the universe determined by a no-boundary initial condition [?]. We can therefore

study W(z) instead of W(zfin,zin) and interpret it as the wave function of the universe
3
.

W(H�) =
�

SL(2,C)

N−1

∏
n=1

dGn

L

∏
�=1

∑
j�

(2j�+1)e
−2th̄j�(j�+1)

e
iλve Tr

�
D

(j�)(H�)Y
†
D

(γj�,j�)(G�)Y
�

.

(5.19)

3
The factorization survives also beyond the classical (large distance) limit when we restrict to the one-

vertex approximation of the amplitude and can be reinterpreted as the amplitude to go from the initial state to

nothing and from nothing to the final state, namely as the contribution of a disconnected spacetime topology

to the total transition amplitude [?].
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invariance. Notice that the integration is over all the Gn but one, in order to avoid a
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−2th̄j�(j�+1)

D
(j�)(H�)

m
�

m D
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The transition amplitude factorize (this is because we are working at the first order in

the exponsion) and each single term W(z) can be interpreted as the Hartle-Hawking wave

function of the universe determined by a no-boundary initial condition [?]. We can therefore

study W(z) instead of W(zfin,zin) and interpret it as the wave function of the universe
3
.

W(H�) =
�

SL(2,C)

N−1

∏
n=1

dGn

L

∏
�=1

∑
j�

(2j�+1)e
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iλve Tr

�
D

(j�)(H�)Y
†
D

(γj�,j�)(G�)Y
�

.

(5.19)

3
The factorization survives also beyond the classical (large distance) limit when we restrict to the one-

vertex approximation of the amplitude and can be reinterpreted as the amplitude to go from the initial state to

nothing and from nothing to the final state, namely as the contribution of a disconnected spacetime topology

to the total transition amplitude [?].
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(2j� + 1) e−2t�j�(j�+1)−izj�

EVALUATION OF THE AMPLITUDE

L�

�=1

1

α3
�

det Hess(j�)

Gaussian sum   peaked at        for all 

max (real part of  the exponent) gives where the gaussian is peaked;

imaginary part of  the exponent =2k!  gives where the gaussian is not suppressed.

We obtain Minkowski space!

jo j�

W (z) =

��
π

t
e−

z̃2

8t� 2jo

�L
NΓ

j3o

W (z) =
�

j�

e−
1
2 ij� θ

θ (γK + 1)− θ = 0

j ∼ jo + δj

jo ∼ Im z̃/4t�

Re z̃ = 0

ȧ ∼ 0
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(2j� + 1) e−2t�j�(j�+1)−izj�

EVALUATION OF THE AMPLITUDE

1

α3
�

det Hess(j�)
z̃

Gaussian sum   peaked at        for all 

max (real part of  the exponent) gives where the gaussian is peaked;

imaginary part of  the exponent =2k!  gives where the gaussian is not suppressed.

We obtain Minkowski space!

jo j�

W (z) =

��
π

t
e−

z̃2

8t� 2jo

�L
NΓ

j3o

W (z) =
�
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(                               )L
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W (z) =
�

j

(2j + 1)
NΓ

j3
e−2t�j(j+1)−izj−iλvoj

3
2

Re(z) ∼ ȧ

�
Im(z) ∼ a

Λ = constλ2G2�2

EVALUATION OF THE AMPLITUDE

intertwiner ve ∼ vo j
3/2

ZC =
�

jf ,ve

�

f

(2j + 1)
�

e

eiλve
�

v

Av(jf , ve)
�

e

eiλ ve

Re(z)2

Im(z)
=

λ2v2o
4t� −→

�
ȧ

a

�2

=
Λ

3

the gaussian is peaked on

     the gaussian is not suppressed for

jo =
Im(z)

4t�

Re(z) + λvoj
1
2 = 0.

iλvoj
3
2 ∼ iλvoj

3
2
o +

3

2
iλvoj

1
2
o δj

DE SITTER SPACE
[Bianchi FV Krajewski Rovelli]
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SUMMARY

“in quantum gravity spacetime should be quantized”
The theory predicts the existence of  quanta of  space. 
Minimal eigenvalue in the spectrum of  geometrical quantities.
Lorentz invariance is a basic ingredient, it is preserved.

“the theory should be so simple and short that it would fit on a tshirt”
The theory is defined by the triple: Hilbert space, observable algebra and
transition amplitudes. All the objects are well defined. 
The amplitudes can be computed with cosmological states (SPINFOAM COSMOLOGY)

“quantum gravity should remove the infinities of  general relativity” 
The amplitudes are UV and IR finite: Planck length and # are fundamental.
Renormalization: first radiative corrections are logarithmic.
In cosmology, Spinfoam support and extend the resolution of  cosmological singularities.

“quantum gravity should have general relativity as its classical limit”
The boundary states represent classical geometries.
The classical limit of  the vertex amplitude gives the Regge Hamilton function. 
In cosmology, Friedmann equations for Minkowski and deSitter are recovered. 
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